PHYSICAL REVIEW E VOLUME 60, NUMBER 6 DECEMBER 1999

Fluctuation modes in confined nematic liquid crystals in a regime of critical wetting
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Analytic solutions are obtained for the energies of normal fluctuation modes in confined nematic liquid
crystals in a regime of critical wetting. The expressions are valid close enough to the nematic-isotropic
phase-transition temperature and demonstrate that the spectra of local director modes give direct information
about the nature of presurface forces and the criticality by itself. The possible changes in the spectra imposed
by interface-position fluctuations and order-electricity effects are also discUSs#63-651X99)10711-6

PACS numbegps): 61.30.Cz, 64.70.Md

Recently, Zimer and co-workers have studied the dynam-yniform director configurations, i.eSy(z)=u(z)(3ny®ng
ics of normal fluctuations near the nematic-isotropic phase--1)/,/6, wheren, is the constant nematic directamormal
transition temperaturdy, in nematic liquid crystals sand- tg the substrateandu(z) is the scalar order-parameter pro-

wiched between two parallel orderingor disordering  file. Above Ty, the functionu(z) is known to be[4]
substrate$1]. Apart from the well-known soft scalar order-

parameter modes, reflecting the interface position fluctua- 1+ 7
tions, their numerical analysis also indicated a few director u(z)= - , (2
modes restricted to the boundary layers: uniaxial director 1+ \/;Slnf’(Z/&Jqu)

modes in the case of ordering substrates, and biaxial director

modes in the case of disordering substrates. In a regime ayhere a;=arcsin[ (1+7)/uo—11/\/1}. §=&/\V1+7 is
critical wetting both types of local director modes exhibit the correlation length in the isotropic phasg=u(0). On
pretransitional slowdown. In this Brief Report we presentthe other hand, belowy, one finds

analytic results valid close enoughTg, for the energies of

local director modes and discuss the role of order electricity 3u,—2(1+17)

L. . ) ... . U(Z)=U _ ,
and critical interface-position fluctuations. b 2U,— 1— \up— Lsin sgr{Ug— Up) 2/ én+ ay]
©)

In a macroscopic Landau—de Gennes descripti&jrthe
surface free-energy potential in a single elastic-constant ap-

proximation can be recasted to the following form: where  ay=arcsinH[ 2up— 1+ (3u,— 27— 2)/(Ug— Up) 1/

. (1 Jup—1} and up(7)=3/4+1-87/4. &y=d?f(up)/du?
F{S]= Lng dxdyf dz[ E(gagﬁy)Z =¢&,/3up,—2(1+ 7) is the correlation length in the nematic
0 phase.

L For 7>0 the profileu(z) describes a paranematic layer,
whereas the bulk is occupied by the isotropic ph@sg. 1.

* g_g[f(s)_f(s")” 5(Z)f°(s)]’ @D o large enoughiy, u(z) has an inflection point at=d,
marking the center of the nematic-isotropic interface. Below

where f(S)=(1+ 7)tr S%/2— 6 tr S+ [tr $?]%/2 is the uni-

form free-energy potential. The following reduced quantities

are used in the above expressi@nthe reduced tensor order

parameteS=Q/Q., whereQ.= 2b/3\/6¢ is the value of the 1.0

scalar order paramet at Ty, =T* +b?/27ac; (ii) the re-

duced temperature= (T—Ty)/(Tyn;—T*). The liquid crys-

tal is assumed to occupy the semi-infinite spae®, z being

the coordinate normal to the surfa&=S,(7) is the order

parameter deeply in the bulkz{=). &= JL/a(Ty—T%) 0.0

is the correlation length of the isotropic phase at coexistence. '

L is an elastic constant, ana=a(T—T*). The material

constantsy, b, andc are positive and temperature indepen-

dent.T* is the supercooling temperature for the bulk isotro-

pic phase. The short-ranged substrate potefi{@) is mod-

eled by the expressiof,(S)=astr(S—Sy)%/2 [3], whereS; -1.0 : ' :

=ug(3ns@ns—1)/1/6 is a symmetric traceless second-rank 00 100 200

tensor characterizing the substrate, ads a phenomeno- z

logical constantug andng are the scalar order parameter and  FIG. 1. Potentials from Eq(4) for ordering substrates at

the director orientation preferred at the surface. We conside&0.0001.&, is used as a unit length for thecoordinate.

Ordering substrates
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10.0 lated to the scalar order-parameter field. This mode describes
fluctuations of the mean-field interface position located at
V3(2) =d,. Physically, this excitation appears as a result of the
broken translational symmetfy(z) # 0] and its existence is

a typical feature of the critical wetting transition. The second
type of localized modes discussed in Rff] is connected
with the uniaxial director fluctuation fieldg,(z) and ¢,(2).

In a vicinity of Ty, the uniaxial modes soften and become
gapless affy,. These features of the local uniaxial director
excitations can easily be obtained analytically in the limit
—0%. At a mean-field level the interface width is much
smaller than the layer thicknesg=¢&,In(1/7), so that the

5.0 Disordering substrates

0.0

V(@) Vi@ region 0<z<d, can be thought of as a nematic plate of
! | ! width d, . In the same limitr— 0™ for the low-energy exci-
0.0 10.0 20.0 tations one can use the following square-well potentiglz)
z (see Fig. X V4(2)=0, if 0<z<d,, and V.(2)=1, if z

>d,. Thus, using the continuity of the logarithmic deriva-
tive of the field ¢,(z) at z=d,, one finds the excitation
energiesE{" = £5k2. The parameterk,, satisfy the implicit
equation

FIG. 2. Potentials from Eq4) for disordering substrates at
=—0.0001.&, is used as a unit length for theecoordinate.

Ty and forug<<u, the surface layer is less ordered as com-
pared to the bulk. The profile has an inflection pointzat k,d,=mn—arcsink,éy), N=1.2,...Nmax, (5
=dy marking the interface positiofFig. 2). The above pro-

file functions can be used to describe the surface phase dia#here the number of localized modeg,y is finite and fixed
grams[5]. Here we just note that for the special cases ofby the condition 6<k,&,=<1: it depends on the reduced tem-
ordering substrates, which are described by the conditioperaturer since d,=d,(7). In the limit 7——0", whend,
a;— +o©, a complete wetting regime is realized fog=1 =¢oIn(1/7), the excitation energieE(l”) take the following
and7— 07, whereas for the special case of disordering subasymptotic form:

strates, described by the conditiog= 0, the isotropic phase

wets completely the wall foa;=¢,* and7—0~. The latter ) m°n? B

case is more interesting in the sense that now the surface E1 In2(1/7)’ n=12,... Nmax- ©)
order parameteu, is not pinned by the surface forces and it

changes with the temperature ag(7)=|7/%\¢5a2—1  This expression is in agreement with the numerical results of
+0O(|7]). This additional surface criticality takes place si- Ref.[1] and reproduces, in particular, the observed cusplike
multaneously with the critical interface delocalization. behavior of the low-lying energy levels. We see that the
Fluctuation modes. Using the decompositionS(r) low-energy levels give a direct information about the loga-
=S(2) + ¢(r), and the parametrization of the tensor fluc- rithmically divergent interface positiord,= &yIn(1/7). The

tuation field by the base tensogs, i=0,...,4[6], i.e., latter critical behavior is characteristic for short-range sub-
¢(r)=2i“:0¢i(r)gi, one obtains the following Schdinger-  strate interaction, and in the case of long-range presurface
type eigenmode equations: forces it is, in principle, change@ee Ref[7] and the refer-

ences therein Therefore, the above excitation spectra can

d2 give a valuable information about both the nature of presur-
—§2—+Vi(z) éi(2)=E;¢i(2), 1=0,....,4, (4 face forces and the criticality by itself.
0 oo . .
dz? In the second limiting case of disordering substrates the

complete wetting regime is realized fag= gal asT—0".

where the functionsV/y(z) =1+ r—6u(z) +6u(z)?, V,(2) Now it is the isotropic phase which wets the wall and the
=V,(2)=1+7—3u(2) +2u(2)?, and V5(2)=V,(2)=1+7 presurface layer of thicknesk,=dy(7) may be considered
+6u(z) +2u(z)? may be thought of as potential energies inas a plate occupied by the isotropic phase. Due to the fact
a related quantum-mechanical problem. The profile functionthat biaxial director fluctuations are strongly suppressed in
u(z) is defined by Eqgs(2) and (3). The variableg(r) de-  the bulk nematic phase, there is a well in the potential func-
scribes longitudinal scalar order-parameter fluctuations, tion V3(z) (see Fig. 2. The potential well is located in the
whereas the pair variables [¢,(r),¢,(r)] and presurface quasi-isotropic domain with a characteristic thick-
[#3(r),d4(r)] are connected to thieansverseuniaxial and  nessdy . Thus, in the case of disordering substrates bound
biaxial director fluctuations, respectively. biaxial director modes appear. On the other hand, the

In what follows we study the eigenvalue problem just for uniaxial director modes, being gapless Goldstone modes in
the special cases of ordering and disordering substratehe bulk nematic phase, are controlled by the monotonically
specified above. In the first case the fluctuation modes ardecreasing potential;(z) so that they will be delocalized all
pinned at the surface, i.e¢;i(2)|,-0=0, i=1,...,4, and over the sample. In a vicinity 6fy, the low-energy levels of
there are two types of local excitations related to the potenthe local biaxial modes can easily be obtained by use of the
tial wells shown in Fig. 1. The first one is the lowest soft same procedure. Now the potentMi(z) is simplified as
mode ¢{*)(z) characterized by an ener@{’)(r)=7and re- V4(z)=1 for 0<z<dy, and V4(z)=9 for z>dy. The
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boundary condition at=0 for the biaxial fieldg3(z) reads Order-electricity effectsThere is a series of issues which
d¢4(0)/dz=asp4(0). One finds the excitation energies might invalidate the uniform-director appoximation sug-
E{V=1+&2k?, where the parameters, now satisfy the gested in the above analysj41]. The order electricity
equation [12,13 belongs to this series. Since the nematic-isotropic
interface is characterized by a strong variation of the scalar
[ Eokn, _ K, order parameter, one can expect that the order electricity will
Kydn=mn—arcsi —\/— —arcsi \/? (D play an important role in the wetting phenomena. Let us
2v2 Kn+as concentrate on the case of ordering substrates when the nem-
wheren=1,2,... Nhax- The number of localized modes

atic director is strongly anchored along the normal to the
n.. is fixed by the condition &k, £,/2y2<1. Using dy surface. The inhomogeneity in the profile functioefz), Eq.
=§,In(1/7]), one gets forr—0~

(2), generates along the axasthe electric polarization field
P(Z):(rln0§+r2)(du/dz), wherer, andr, are the order-

2,2 electric coefficient§13]. Denoting by# the polar angle of
E(V =1+ 77—, n=12,... Nmax- (8)  the director ny=(sin#,0,coss), it is easy to see that
In?(1/| 7)) =6(z), since the free-energy density terfy, connected

. o o with P, mixesng anddu/dz:
We see that in the limit— 0~ the local biaxial modes are

strongly softened as compared to the bulk biaxial fluctua- ‘ 1 , 2w 2 ,(du 2

tions in the nematic phase. For evemythe energiesE{" 0——§P0Eo—m(rlco 0+12)% 4z - ©
change fromE{"=9 (the gap in the bulk nematic phase

E(sn): 1 (the gap in the bulk isotropic phase Heree,(0) =€, + (¢ — €,)cog @ is thezz component of the

Role of the interface-position fluctuatior@ince the upper dielectric tensor ands, is the z component of the induced
critical spatial dimension for a critical wetting transition is electric field. Combining the last equation with the elastic
D=3, higher order fluctuation effects are not excluded. In-termin Eq.(1), one finds that the elastic constanin Eq. (1)
deed, the singular part of the mean-field free energy in 4 effectively renormalized asL—Le¢(0)=L+[4m/
regime of complete wetting behaves lik@"% — 7In(7). On €24 8)1(r1cos 6+r,)°. To find the function6(z) we will
the other hand, the one-loop fluctuation contribution to thefollow the arguments of Ref13], applicable in our case for
free energy is related to the lowest soft muﬂ@’(z) since —07. _The Euler-Lagrange equation for the polar angle
the energies of the excited states of E4). are separated @S obtained from Eq(1), reads
from E{”) with a finite gap. Using this fact, it is easy to see 2o 1 dl../dul?
that the fluctuation part of the free energy fé'(r)oc = _e”(_u)
—EQ INEY)~—7In(7), so that it compares to the singular dz2 6Lu? df 1dz
part of the mean-field free ener§8,9]. Since for uniform-
director configurations the scalar order-parameter figlc)
is decoupled from the director fields, most of the result
known from the scalar theofyL0] can be applied to nematic
systems without changes. However, the fluctuation mod&OSS o S -~ |
S can effectively disturb the studied local director excita-Portional toLf, the minimum condition for this energy
tions. It is easy to see this qualitatively if we remember somélLert/d6=0 also defines the average polar angle at the in-
of the fluctuation effects connected to the soft maﬁﬁ)@(z), terfaced, [14]. We do.not consider here possible deviations
originally obtained in a context of the scalar order-parametepom the linear beh+aV|or 99(2) close to the s_ubstra[é.S]. .
theory. At the first place, it can be shown that this mode! Neréfore, asr—0" the inhomogeneous director state is
produces singularities in the correlation function Characterized by the polar angle
(bo(r ,21) $o(0,25)) ~ exp(=1, 1) 65(2) #(2), whereg : 7z 1
=1/\EQ«1/{7 is the characteristic length of the scalar 6’(2)=00d—=00§— (i) —0", z=d,. (1)
order-parameter correlations parallel to the surface. Thus, ! 0 T
there are critical Ior_lg—range correlations of the scal_ar order- The inhomogeneous director state described above can
parameter fluctuations parallel to the surfagepillary  generate several changes in the fluctuation mode dynamics.
waves. Another criticality connected t@{”(2) is the pre-  Since the local base tensors are now coordinate dependent,
dicted divergence of the interfacial width. Denoting by gi:gi(z), the normal mode equatior(g.) are Coup|ed_ In
di(r;)=d,+{(r.) the local interface position, it can be particular, there is a coupling between the longitudinal scalar
shown that the characteristic interface thicknéss (%) order-parameter fielgpo(z) and the transverse director fluc-
diverges ast—0" according to the asymptotic fornd,  tuations¢,(z) and ¢5(z). The mode coupling is, however,
x«n g“och_| [9]. The critical increase of the effective inter- asymptotically small, as it is controlled by the small param-
face width will effectively change the potentih(z) which  eter &/d,«In"%(1/7). Since the interaction decreases loga-
controls the director excitation spectrum. On the other handithmically , the mode coupling due to order-electricity ef-
the treatment of the local fluctuation modes used throughouects can play an important role in real experiments.
the paper remains valid, since close enougfipthe effec- In conclusion, the above analysis shows that the spectra of
tive interfacial width will be much smaller than the charac-local director modes can give a direct information about the
teristic domain thickness. nature of presurface forces and the criticality by itself. In

(10

Sincedu/dzis a é-like function centered at=d, , the func-
dion 6(z) can be approximated with a linear function in the
region 0<z<d,, excluding the vicinity of the interface and,
ssibly, of the surface. Since the interfacial energy is pro-



PRE 60 BRIEF REPORTS 7599

principle, the role of interface-position fluctuations can beferent liquid crystal materials. Finally, it was shown that the

neglected only close enough Tq,, when the effective in- order-electricity effects can importantly change the local ex-
terface width is smaller than the presurface layer thicknesg:itation spectra, as they effectively couple the normal direc-
The fluctuation effects iflD =3 are known to depend on the tOF modes to the “dangerous” scalar order-parameter mode
value of the dimensionless parameter T/4méo, whereé bo(2).
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